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Traditional Conjoint Analysis 

A traditional conjoint analysis may be thought of as a multiple regression 
problem. The respondent’s ratings for the product concepts are observations 
on the dependent variable. The characteristics of the product or attribute 
levels are observations on the independent or predictor variables. The 
estimated regression coefficients associated with the independent variables 

are the part-worth utilities or preference scores for the levels. The R2 for the 
regression characterizes the internal consistency of the respondent.  

Consider a conjoint analysis problem with three attributes, each with levels as 
follows:  

Brand - A B C  

Color –  Black Green 

Price - $100 $150 $250  

For simplicity, let us consider a full-factorial experimental design. A full-
factorial design includes all possible combinations of the attributes. There are 
18 possible product concepts or cards that can be created from these three 
attributes:  

3 brands × 2 colors × 3 prices = 18 cards  

Further assume that respondents rate each of the 18 product concepts on a 
scale from 0 to 10, where 10 represents the highest degree of preference. See 
table below. 

 

 

 

 

 



 

Card Brand Color Price ($) 

1 A Black 100 

2 A Black 150 

3 A Black 250 

4 A Green 100 

5 A Green 150 

6 A Green 250 

7 B Black 100 

8 B Black 150 

9 B Black 250 

10 B Green 100 

11 B Green 150 

12 B Green 250 

13 C Black 100 

14 C Black 150 

15 C Black 250 

16 C Green 100 

17 C Green 150 

18 C Green 250 

 

Zero Code conjoint design app uses partial factorial designs to reduce the 
number of cards. e,g. instead of rating 18 cards, with Zero Code design same 
information can be collected from respondent using fewer cards ( check how 
many cards in app) ….  

We can use Microsoft Excel to analyze data from traditional conjoint 
questionnaires. Multiple regression functions come from the Excel Analysis 
ToolPak add-in.  

 

 

 

 

 

 

 

 

 



 

 

Data Organization and Coding  

Assume the data for one respondent have been entered into an Excel 
spreadsheet. Assume the first card is made up of the first level on each of the 
attributes: (Brand A, Black, $100). The respondent rated that card a 3 on the 
preference scale. The second card has the first level on brand and color and 
the second level on price: (Brand A, Black, $150). This card gets a 3 on the 
preference scale. And so on.  

Card Brand Color Price ($) Preference 

1 1 1 100 3 

2 1 1 150 3 

3 1 1 250 0 

4 1 2 100 6 

5 1 2 150 3 

6 1 2 250 1 

7 2 1 100 3 

8 2 1 150 3 

9 2 1 250 1 

10 2 2 100 10 

11 2 2 150 4 

12 2 2 250 4 

13 3 1 100 8 

14 3 1 150 5 

15 3 1 250 3 

16 3 2 100 7 

17 3 2 150 5 

18 3 2 250 4 

 

After collecting the respondent data, the next step is to code the data in an 
appropriate manner for estimating utilities using multiple regression. We use 
a procedure called dummy coding for the independent variables or product 
characteristics. In its simplest form, dummy coding uses a 1 to reflect the 
presence of a feature, and a 0 to represent its absence. The brand attribute 
would be coded as three separate columns, color as two columns, and price as 



 

three columns. Applying dummy coding results in an array of columns. Please 
see the table below after encoding. 

To this point, the coding has been straightforward. But there is one com- 
plication that must be resolved. In multiple regression analysis, no 
independent variable may be perfectly predictable based on the state of any 
other independent variable or combination of independent variables. If so, the 
regression procedure could not separate the effects of the confounded 
variables. We have that problem with the data, since, for example, we can 
perfectly predict the state of Brand A based on the states of Brand B and 
Brand C. This situation is called linear dependency.  

To resolve this linear dependency, we omit one column from each attribute. It 
really doesn’t matter which column (level) we drop, and for this example we 
have excluded the first level for each attribute.  

Card Brand B Brand C Green 150 $ 250$ Preference 

1 0 0 0 0 0 3 

2 0 0 0 1 0 3 

3 0 0 0 0 1 0 

4 0 0 1 0 0 6 

5 0 0 1 1 0 3 

6 0 0 1 0 1 1 

7 1 0 0 0 0 3 

8 1 0 0 1 0 3 

9 1 0 0 0 1 1 

10 1 0 1 0 0 10 

11 1 0 1 1 0 4 

12 1 0 1 0 1 4 

13 0 1 0 0 0 8 

14 0 1 0 1 0 5 

15 0 1 0 0 1 3 

16 0 1 1 0 0 7 

17 0 1 1 1 0 5 

18 0 1 1 0 1 4 

 

 



 

 

 

Even though it appears that one level from each attribute is missing from the 
data, they are really implicitly included as reference levels for each attribute. 
The explicitly coded levels are estimated as contrasts with respect to the 
omitted levels, which are defined as 0.  

 

Multiple Regression Analysis  

Microsoft Excel offers a simple multiple regression tool (under Tools + Data 
Analysis + Regression with the Analysis Toolpak add-in installed). Using the 
tool, you can specify the preference score (column Y) as the dependent 
variable (Input Y Range) and the five dummy-coded attribute columns as 
independent variables (Input X range). You should also make sure a constant 
is estimated; this usually happens by default (by not checking the box labeled 
“Constant is zero”). 
 

The mathematical expression of the model is as follows:  

Y = b0 + b1(Brand B) + b2(Brand C) + b3(Green) + b4($150) + b5($250) + e  

where Y is the respondent’s preference for the product concept, b0 is the 

constant or intercept term, b1 through b5 are beta weights (part-worth 
utilities) for the features, and e is an error term. In this formulation of the 
model, coefficients for the reference levels are equal to 0. The solution 
minimizes the sum of squares of the errors over all observations.  

 

 

 

 

 



 

 

A portion of the output from Excel is illustrated below. Using that output 
(after rounding to two decimal places of precision), the utilities (coefficients) 
are the following:  

Brand                   Color                       Price  

A = 0.00             Black = 0.00           $ 100 = 0.00  

B = 1.5               Green = 1.67           $ 150 = -2.33  

C = 2.67                                                $ 250  = -4.00 

The constant or intercept term is 3.94, and the fit for this respondent R2 = 
0.77. The fit values range from a low of 0 to a high of 1.0. The standard errors 
of the regression coefficients (betas) reflect how precisely we are able to 
estimate those coefficients with this design. Lower standard errors are better. 
The remaining statistics presented in Excel’s output are beyond the scope of 
this chapter and are generally not of much use when considering individual-
level conjoint analysis problems. 

 



 

 

Conjoint analysis with multiple regression 

Only in the smallest of problems (such as our 18-card example) would we ask 
people to respond to all possible combinations of attribute levels. Large full- 
factorial designs are not practical. Fortunately, Zero Code conjoint app finds 
efficient fractional-factorial designs. Fractional- factorial designs show an 
efficient subset of the possible combinations and provide enough information 
to estimate utilities.  

 


